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1. INTRODUCTION

h quantile

Given a positive number q<<1 let xq denote the (upper) qt
of a random variable X, defined by P(ngq)=q. In a previous report (Breiman,
Stone and Gins [2]) a number of point estimators of Xq based on a random
sample of size n from the distribution of X were studied. The main purpose

of the present research is to develop and study the performance of several

confidence interval procedures for gq based on the sample, especially when
g=1/n. This work is reported on in Section 2. In Subsection 2.1.1, modifi-

cations of one of these procedures are developed for handling grouped data,

which ¢ontain many ties, satisfactorily. A detailed discussion of the

quadratic tail procedure, described in Subsection 2.3, is given in Section 3.

In Section 4 the behavior of the exponential tail estimator is studied when

the sample data is stationary but dependent. The selection of procedures

for consideration has been guided by the dictum of DuMouchel and Olshen [3]

that one should "let the tails of the data speak for themselves."
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2. CONFIDENCE INTERVALS FOR EXTREME QUANTILES

Let X denote a random variable whose (unknown) underlying distribution
function F is continuous on (-~,») and strictly increasing on an interval
I which contains the support of F [i.e., which is such that P(XeI)=1]. Let
S(x), x>0, be the tail (survival) probability function defined by
S(x)=P(X>x)=1-F(x). For 0<g<l let x_ denote the (upper)qth quantile of X

q
defined by

= 1a- Y =P =
S(xq) 1 F(xq) (X>xq) q

Let X]""’Xn denote a random sample of size n from F and let
X(]),...,X(n) denote the corresponding order statistics defined so that

X(])>...>X(n). A confidence interval procedure for xq is an interval

gq and xq being functions of X(l)""’x(n)'
The length of |I| of the interval I is given by I =

[ = [5q,xq], where LT with both
X =X .
q —q
Let PF and EF denote probabilities and expectations when F is the
distribution function of X. Relevant characteristics of the confidence

interval procedure include PF(xq<T), PF(x >1), PF(xqéI) = PF(xq<I) + PF(xq>I),

- = q —
and EF|I|. (Here x_<I and x_>I mean respectively that x_<x_ and x >xq.) The

q q Q= q
goals of making the indicated probabilities and expected length both small
over a wide range of F's are obviously in conflict with each other.
One approach to obtaining a confidence interval procedure is to start
out with a realistic model F(-;8), ee(:), for F, express Xq s a function xq(e)

of the unknown parameter 6, and then employ a classical parametric confidence

interval procedure for xq(e). Given O<a<l, suppose I is (at least approximately)

a classical 100(1-a)% confidence interval based on the assumed model; i.e., that




__!w_'——'_

Pe(xqtf) ca, 6@,

« o for any F which

=

where P, = PF(-;e)' Then roughly speaking, PF(xqtf)
can be globally well approximated by F(-;8) for some ee(:). Otherwise
PF(xqéT) can be substantially larger than a. This is true in particular
for F's whose central portion and extreme upper tail are best approximated
by distribution functions F(-;8) with significantly different values of 8.
Relative to such F's the confidence interval procedure is not robust vis

a vis
PF(xq[I-) s a . (2.1)

There are two Qays of making such a confidence procedure more robust:
(1) Consider a higher dimensional model F(-;8,t), (G,T)€<:)XT (e.g., a three-
parameter instead of a two-parameter lognormal model). A wider range of
distribution functions F can be globally well approximated by a distribution
function in this larger model. (2) Base the confidence interval procedure

on only the upper m order statistics X(1),...,X( for some m<n, rather than

m)
on all the original data. Both (1) and (2) lead to procedures which are more
robust vis a vis Eq. (2.1). Unfortumately they also both lead to significant
increases in E- T .

Robustness vis a vis Eq. (2.1) here is with respect to departures of F
from the assumed model. Another type of robustness, when F belongs to the
assumed model, is with respect to errors in measuring or recording the sample

data; this type of robustness will not be considered in the present report.




[Note that (1) and (2) above can lead to procedures which are less (not more!)

robust with respect to measurement and recording errors.]

Understandability and ease of implementation are important additional
considerations in determining which procedures to use.

So far, confidence intervals T=1(q) have been considered for quantiles
Xq» 0<q<l. It is also desirable to consider confidence intervals J=J(x) for
tail probabilities S(x)=1-F(x), -w<x<=, There is a natural one-to-one
correspondence between confidence intervals for xq and these for 1-F(x)
given by J(x)={q:xeI(q)} and T(q)={x:qed(x)}. This correspondence preserves
coverage probabilities. That is,

PF(xqu(q)) = PF(qu(xq))

and

PE(1-F(X)ET(x)) = Pe(xy_p(y)eT 0-F(x))) if O<F(x)<

Because of this close correspondence between confidence intervals for quantiles
and those for tail probabilities it was decided to devote the present research
effort exclusively to confidence intervals for quantiles.

Three confidence interval procedures will be described in Subsections 2.1
through 2.3. (The procedure described in Subsection 2.3 will be elaborated
on in Section 3.) A Monte Carlo experiment designed to compare the performance
characteristics of these procedures will be discussed in Subsection 2.4.
Tentative conclusions drawn from the results of this experiment and suggestions

for further work are presented in Subsection 2.5.




B

2.1 TWO-PARAMETER EXPONENTIAL PROCEDURE

Consider the two-parameter exponential model

(x-1)/a

F(x;t,a) = 1-e” X>T

=0, X<T

where te(-=,») is a location parameter and a>0 is a scale parameter.

Correspondingly
S(x;t,a) = e-(x-r)/a’ X>T,
=1, X<T ,
and
Xq = T8 Tog(1/q), 0<qg<1

The two-parameter exponential model is appealing for several reasons.
First, it is very simple and leads to the above simple formula for xq.
Second, the upper tail of distributions of this type can be used to provide
reasonably accurate approximations to the upper tail of a number of commonly
assumed alternative models--Weibull, gamma, and lognormal. Third, the upper

tail of distributions of this type is realistic in many applications (see,

e.g., Breiman, Gins, and Stone [1]).
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Given 2<m<n, let X(1),...,X(m) denote the upper m order statistics
based on a random sample of size n from F(-;t,a). The joint density of these

random variables is given by

f (X sese X ;T,U)
X(]),...,X(m) 1 m

" n-m
n _me- Z](xi-xm)/a e-m(xm-r)/a []-e-(xm-r)/a:] :

= T a

.sX _3T,a)=0 otherwise. The

for t<x _<...<x;, while f ., (Xq5..
m 1 X(1), X(m) 1 m

maximum Tikelihood estimators of t and a based on X(1),...,X(m) are given by

- 1 M1
tw 2 By
and

T = -2 n
T = x(m) a log -

The corresponding maximum 1ikelihood estimator of xq is given by

X =T+alog % = X(m) + a log ﬁ%

q

This estimator, with a replaced by

~ 1 m=1
2wt 2 Dy tmd




| was studied in detail in Breiman, Stone, and Gins [2], where it was referred

, to as the exponential tail estimator. Considering its simplicity, it is

surprisingly robust to moderate departures of the upper tail of F from the

assumed exponential form.

A confidence interval procedure for xq will now be obtained. To this

end set Yi=X(i)-X(m) for 1<i<m-1. Then

fY vy X( (Y1s---,ym_1,xm;1,a)

: | v/ nlgen)/ar () e
Wa e e -e

for X T and 0<ym_]<...<y1, while fY]’...,Ym-1,X(m)(y],...,ym_],xm;r,a)=0
otherwise. Let Z]""’Zm-] be independent random variables having the
common exponential density fz defined by i
1
_1,-2/a
fz](z) 3 € , 2>0 .
=0 s Zf_o ’

and suppose that z],...,zm_],x(m) are independent random variables. Let

Z(])""’Z(m-l) be the order statistics from 21,...,Zm_], defined so that

Z(])>...>Z(m_]). Then z(]),...,z<m_]),x( has the same joint distribution

m)
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as Y]""’Ym-l’x(m)‘ Consequently Y1+"‘+Ym-1 is independent of X(m) and

has the same distribution as

Z(])+...+Z( = Z]+...+Z

m-1) m-1

namely the gamma distribution having density g(-;m-1,1/a) defined by

tm—ZQ-t/a
g(t;m-1,1/a) = S D t>0 R
a  (m-1)!
=O’ tf_O

Therefore a has the gamma distribution with density g(';(m-l),(m-l)/a). The

density of X(m) is given by

. _ n! 1 -m(x—r)/a[ -(x-r)/a]n'm
fX (x;1,a) = '(?n_—-l')—.(n__mrr 3 e 1-e
(m)
for x >t and f (x;71,a)=0 for x<t. The distribution function of X is
m X(m) e (m)

given by

FX (x;1,a) 1-B(e'(x'r)/a;m,n-m+1) .

(m)

where




1

Let —o<M<o, Since X(m) and a are independent, for -«=<z<= J
PT,a(T"'Maf_X(m)"'Z a)

-]

=f PT a(X(m)?_T"‘Ma'Zt)f’é(t;T’a) dt
O b}

= j' B(e'MeZt;m,n-m+1)g(t;m-1,m-]) dt
0

Now xq =t + a log(1/q), so that

+2 3) = [ B(qe?;m,n-m+1)g(tim-1,m-1) dt
) 0

Given O<a<l, define z, = za(q;m,n) by

[s-]

'[ B(qeﬁs;m,n-m+1)g(t;m-1,m-])dt = q . (2.2)
0
Then
T,u(xqg)((mf*zm a) = g for -o<t<= and a > 0 . (2.3)
= + 3 —= + 3 = X . E . 2.3)
Set x X(m) Za/2 a, xq X( ) Z1—(a/2) a and 1 [gq,xq] By Eq (
Pr,a(xqél) = o for -o<t<o and a > 0
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1 In other words, T is a classical 100(1-a)% confidence interval for xq within
the context of the two-parameter exponential model. It is called the two-

parameter exponential confidence interval procedure. The procedure is location

i i . is, i yeoes + 9o ydt
and scale invariant. That is, if X(]) X(m) are replaced by d bX(1) d bX(m)
i with b>0, then the left and right end-points X4 and §a of T are replaced by

d+b5q and d+b§§’ respectively. ;

Formula (2.3) and hence the confidence interval procedure I have a
generalized Bayesian interpretation. To see this, let w denote the generalized
prior density on (-w,o)x(0,) defined by w(t,a)=1/a. The corresponding
posterior density is defined by

Tr('c,alx] A ,xm)

m(t,a)f (x],...,xm;r,a)

X(]),...,X(m)

) ,a)f see.sX 3Tsa)dr d :
[f’ﬂ(‘r a) X(])""’X(m)(x] xmra T da 4

1 m)

iz:](x--x /a -m(x -t)/a [ -(xm-"r)/a]n'm

i al™Me e 1-e
© 4 (x;=-x.)/a m -m(x_-t)/a -(x_-t)/a "™
f1m 2y (x57%g daf_me [1'6 m ] i
0
for © < x and
m(T,alxys..esxy) = 0 for © > x.

(It is understood here that x]>...>xm.)




Let T and 2 denote random variables having joint density n(T,a[X],...,x ).

Then the marginal density wa(a|x];,,,,xm) of ais given by

~

na(a|x1,...,xm) !
" ;

=]

].n(r,a|x1,...,xm) dt

j;da l;n(r,a|x1,...,xm)dr

a _(a é
=g <-;m—'| ,m-l) s :

a2 a ;

where & =X](x;-x )/(m-1) and g(*3m-1,m-1) is a gamma density as defined

above. The conditional density w{lg(r]a;x1,...,xm) of T given a = a is

obtained as

for T < x_and T
moxla

w{la(rla;x1,...,xm)

v

n(r,alx],...,xm)

=]

[ TT(TgalX],---axm) dt

-0

. -m{x _-1)/a
n -1 o m [

; : -(xm-r)/a n=m
m=-1)" (n-m)" @ -€

(r|u;x1,...,xm) =0 for t > X




-(z)/2

Set B = e and note that 1 = Xa ¥R log p- The conditional
density n£|g(p|a;x1,...,xm) of B given a=a is obtained as
] Toja(PIHsXys e voxp)
§ AVENAV)
3
=& 5 (x +a log p|asx X_)
p {]3 m AN A |

n. m-1 n-m
m p (1-p) for 0<p<l

and
"pla

function of p given a=a is obtained as
N

(p|a;x1,...,xm)=0 otherwise. Consequently the conditional distribution

F |a(p|a;x],..‘,xm) = B(p;m,n-m+1)

RIZ

For 0<q<1 set

éq = b3 + ’% 109(1/CI) xm + % ]OQ(R/Q)

Then the conditional distribution function of xq given a=a is obtained as

F | (x[asxyseesx)

Xq!&

[[]
-

- (x-x)/a
(a e Ia;x],...,xm)

Rl

[ (x-x_)/a
B(Q e ;m,n-m+l)




TRy

Consequently the distribution function of éq is given by

(xlx],...,x )

Xq m
= F (x]asXyseeosX )m (a]Xy,...,% ) da

£ q| 1 m'"a 1 m
= f B(q e ,m,n-m+1 3%—9 <§1m-1,m-1> da

0 a

t/a
= B q e smyn-m+1}g(t;m-1,m-1) dt
Therefore
Fo (xm+za3lx],...,xm) =a

e

where z, is defined by Eq. (2.2). This yields the generalized Bayesian
interpretation of Eq. (2.3).

2.1.1 Modifications to Handle Grouped Data

In many applications X],...,X are rounded up or down or grouped to

n

yield a small to moderate number of distinct values. This rounding or

grouping can have an adverse effect on the confidence interval procedure

described above unless the procedure is appropriately modified.
Specifically let k>2 denote a positive integer and let

-cm=d _<d. < <d =, Fou T<j<k let Nj denote the number of sample

0<d4 ...<dk_.l K
values in the interval (dj-1’dj)' Then

MR St iaiatahin ia i




P alMmnyee e uN=n,)

k ";
= C(n],-..,nk).: [F(dJ;T)a) - F(dJ_] ;T’a)] ’

j=1

where F(-»;t,a)=0, F(»=;t,a)=1, Nyse..,N are nonnegati/e integers adding up

to n and

nl

C(n-l,...,nk) =——'—-——rn1‘.....nk.
If n]>0, then
Pr,a(N1="1""’Nk=nk)
n, n.
’(d]'T)/a Kk '(dj_]'T)/a -(dj-T)/a J
= L(n],...,nk) 1-e 525 e -e

n. n
-(d: ,-d,)/a -(d,-d;)/a] 3 -(n-ny)(d,-v)/a -(d,-1)/a] |
C(np---,nk)‘;(r[e NEL B S B ] . 1745 loe
5=2

for t < d] and a > 0, while the indicated probability equals zero for t > d].

An approximate 100 (1-a)% confidence interval for xq will now be obtained
by modifying the generalized Bayes derivation of T given above. Let 7 again
denote the generalized prior density on (-=,»)x(0,») defined by w(t,a)=1/a.

Suppose 15p1<n. Consider the corresponding posterior density defined by




n(t,aln],...

’"k)

. n(r,a)PT’a(N]=n],...,Nk=nk)
Tf[n(T’a)PT,a(N]=n1""’Nkznk)] dr da

k [ -(d. ,-d,)/a -(d.-d,)/a]
-1 e 3-t -eJ1 e

b -

for v < d1 and a > 0, while w(f,a]n1,...,nk) = 0 otherwise. Observe that

n
1
d,  {n-ny)(d,-1)/2 -(d,-1)/a
1 e ! 1 l:]-e ! dt
© -(n-ny)t  __n
=afe 1(1-GT)]dT
0
1 n-n,-1 n n,{n-n,=1)!
=afp ](]-p)]dpza_.l_n_:]—
0

Let 7 and g denote random variables having joint density n(r,a{n],...

Then the marginal density na(a!n],...
A"

,nk) is given by

..,nk)

n

. . ld - J
“’(r[e (dj_1 d])/a-e (dJ d])/a]

4. a)a ~(dd)salS ey dieysal -(getrsa]
//d_];rre RN RCIRNTE LR ICRO VY s ,)/a}“ o

,nk).
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The conditional density ﬂ;la(rla;n1""’nk) of r given a2 = a is obtained as

n{lé(rla;n],...,nk)
™
n! ‘(n'n])(d]'T)/a [ -(d]-r)/a]
EEETH TR 1-e |

for t < dy, and wtl%(rla;n1,...,nk) =0 for v > d.
N

Set p = e°(d]'$)/a and note that ¢ = d, + a log p. The conditional
R =28 " 1 2

density m_, .(p|asny,...,n,) of p given a = a is obtained as
1 k R N

RIg

nele(p|a;n1,...,nk)

= 2 .
=5 "{|e(d1 + a log p|a,n1,...,nk)

n n-n1-1 ny

= n]fin-ﬁ]-]S: P (1-p) for 0 < p< 1

and v _(plasny,...,n ) = O otherwise.

RIR

The conditional distribution function of P given a=a is obtained as
ﬁe|e(p|a;n1,-..,nk) = B(psn-ny,ny+1)

where B(p;a,2) is as defined above.




19
1 For 0 < q < 1 set
E RERE: log (1/9) = dy + a log (p/a)

Then the conditional distribution function of xq given a=a is obtained as

L

(x|a;n],...,nk)

F-):gLe
= FRIQ(Q e

(x-dy)/a
B(q e ;n-n],n]+1)

(x-dy)/a
1a;n1,...,nk)

Consequently the distribution function of 5q is given by

F (xln],...,nk)

, = [ F (xlasnqy,...,n,) 7 (alng,...,n, ) da
1 k 1 k
fOXIg 2

(x'd] )/a
B(q e ;n-n],n1+1) na(a[n],...,nk) da .

0
where wa(aln],...,nk) is given explicitly in Eq. (2.4). 3‘
Given 0 < 3 < 1, define 5q = gq(n],...,nk) and xq = xq(n1,...
=2 X =1 -2
Fe (5q]n],...,nk) =5 and F (xq!nl,...,nk) 1-5

-3 ~3




Also set

T =[x (Ng,...

=9

Then T should be a good substitute for the two-parameter exponential 100 (1-a)%

20

confidence interval when the sample data are rounded or grouped.

(Note that

additional rounding or grouping may be required to guarantee that 0 < N1 < n.

This provides no problem in practice, for if the requirement cannot be met,

the original rounded or grouped observations are jidentical and there are no

reasonable confidence intervals for x_.)

q

2.2 TWO-PARAMETER WEIBULL PROCEDURE

Consider the two-parameter Weibull model

F(x;t,8)

]

where t > 0 and 8 > 0. Correspondingly

S(x;t,8)

and

,  0<qgg<]




—
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In this model B8 is a shape parameter and a = t']/B is a scale parameter.
Alternatively log a and 1/8 are respectively the location and scale parameters
for the distribution of log X, where X has distribution function F(-;t,B).

Given 2 < m < n, let X(]),...,X( denote the upper m order statistics

m)
based on a random sample of size n from F(«;t,R). The joint density of

these random variables is given by

f (XyseeesX 3t,B)
X(]),...,X(m) 1 m

n! Bm<—,"—‘1- )B-] M 'txr% - 'tZT X?
= ] X -e e
(n-m)" 73
The maximum likelihood estimators of t and 8 are not easily found.
An approximate generalized Bayes confidence interval procedure for xq

will now be obtained. Let = denote the generalized prior density on

(0,)x(0,») defined by w(t,8) = 1/tR. The corresponding posterior density
is defined by

)

n(t,B]x.I,...,x

(x] ,...,xm;t,e)

(x1,...,xm;t,6) dt dR

[

b
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Forv > 0 and t > 0 set

g(\),t) = tm'](] - e’\)t)n-m e’mt
Also set
A _ A~ . _ ]
t = t(s,x],...,xm) = "
iN B
m %:xf
Then

Let tand g denote random variables having joint density

w(t,5|x1,...,x Then the marginal density w (B|x1,...

m- 8

given by
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o]

g-1

(tg)™! i%'x " g8, t/8) at

] -‘ /Og ma

0 m ~ ~
j'(ta)m'] (TTX1> dg j.g(tXﬁ,t/t) dt
0 1 0

? The conditional density n%lé(tle;x1,...,xm) of t given g =8 1is obtained as

i nglé(tls;x],...,xm)

n(t,B[xl,...,x

)
! / ﬂ(t,B[XI,---,Xm) dt
0

I\B ~
g(tx,t/t)

/ 9(txd,t/t) dt
0

! The corresponding conditional distribution function of & given Q = B8 is

obtained as




For 0 < q <1 set

Then Xg S % if and only if

LS

t> x8 109 (1/q)

Thus the conditional distribution function of xq given 8 = g is obtained as

—~

(x|8;x],...,xm) j

a1

S 1 g0 100 (/9 ixg g

N

The distribution function of %q can be expressed in terms of quantities

defined above according to the formula




Fx (x[x],...,x )

Xq m

[oo]

= F 5 ey m 3000y d
_é jg|%(xls Koo ) Ta(Blxgaxg) o8

Given 0 < o < 1 defined % and ia in terms of x(1),...,x(m) according

to the formulas qu(éq]X(]),...,X(m)) = /2 and qu(qux(]),...,x(m)) =1 - a/2.

Also set T = [éq,iaj. Then Pt,B(xth) =g for all t > 0 and 8 > 0. The proof

of this result, which will not be given here, depends on the observation made

at the beginning of this subsection that the two-parameter Weibull model can
be viewed as a location-scale model. The result shows that I is a classical
100(1-a)% confidence interval for xq within the context of the model. It is

called the two-parameter Weibuli confidence interval procedure. The procedure

is invariant under scale and power transformations. That is, if X(]),...,X(

are replaced by d X?1),...,d X?

m)
respectively with d > 0 and b > 0, the left

- - b =b
d fl 1 d by d
an xq 0 are replaced by gq and d xq

m)

and right end-points x respectively.

2q
[To see this, observe first that

n(t,81d x2,...,d «2) = a® br(a®t,b81x ... 0x )

and then use this equation to show that

b b b
qu(d X“d Xq5e.0d Xp) = qu(x}x],...,xm) ]

The confidence intervals for xq can be transformed as described in Subsection 2.1

to yield 100(1-a)% confidence intervals for S(x).

o e A ¢ DATLOMC-RNNS
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Unfortunately the two-parameter Weibull confidence interval procedure
is not computationally feasible. To obtain an approximate version of the
procedure which is compututionally feasible, for v > 0 and t > 0 set

'Vt)

h(v,t) = log g(v,t) = (m-1) Tog t + (n-m) log (1-e - mt and let h'(v,t),

etc., denote differentiation of h with respect to t. Then

hl(v’t) =E|.-_‘|+M&_m

t oVt g

_m-1 (gfm)vze”t

2 ‘
t (eJt_])

o (v,t) <0 s

and

ur

h (v,t) >0

2(m-1) , (n-m)vie"t(eVt41)
3
t (th_])

Thus h{v,t) has a unique maximum at t (v) which is the unique root of

0~ "
h'(v,t) = 0. This root can be found by applying Newton's method to the

function h' (v,-).

Consider the approximation

h(v,t) = h(v,t ) + %-h"(v,to)(t—t

2
0 )

0

)2

nj—

1 )+ vt ) (t-t
og g(v 0) (v 0)( 0
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Correspondingly

]
(Yo
—

<

-

(nd

g(v,t) =

This can be written as
g(v,t) = COUIN(tst(v),0%(v))

where

V-0 (o t(v)

Q
P
<
~
1]

[9p]

—
<

~—
1]

glv,t(v))a(v) ¥2r

§ and N(-;u,cz) is the normal density with mean p and variance 02. The approx-

imation for g in turn yields the approximations

, ) -1
" g™ <7""Ix1.> C(u(8))
Ta(Blxg s oxy) 2 — 1 _—
[ <ﬂ'x1> c63s)) d
} 0 1

and

m E(tls;x],...,x ) 2 N(t;% t(5(8)), £2 02(3(8))) ,

|

where v(B) = t xﬁ.




Let ¢ denote the standard normal distribution function and set Q = 1 - ¢,

Then
F . (t]85x <) s ¢<§']t-t(3§8)2>
2 T
S0
FXQIQ(XIB;X1""’Xm) : Q(?-1X-B;zggé;?)_t(giﬁll>
Set
%x (x|x],...,xm)
= 4? figl%(xls;x],...,xm) ﬁé(slx],...,xm) dg ,
where ﬁe and ﬁfglé are the approximations to T and qu|E just determined.

Given 0 < a < 1 define gq and ia in terms of X(I)""’X(m) according

to the formulas

Féq(l(ﬂx(]),...,)((m)) = %‘ and qu(;q‘x(1)""x(m)) = ,_%

Then T = [5Q’;§] determines the approximate two-parameter Weibull confidence

interval procedure. It is also invariant under scale and power transformations.
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2.3 QUADRATIC TAIL PROCEDURE

let 3<m<nand let X(]),...,X(m) denote the upper m order statistics
based on a random sample of size n from F. Set 2(x) = -log S(x) = -log [1-F(x)].
Then S(x) = e'l(x), so that

- [(X) =2 (X ) )]

S(X) = S(X(m)) e . X > X(m)

In particular, if x_ > X(m)’ then

q

and hence

S(X, )
2(xq) - Q(X(m)) = log —{m)”

In other words, xq is the solution to the equation

.

2(x) - Q(X(m)) =Yy ’ (2.5)
where y = log [S(X(m))/q]. The solution to Eq. (2.5) can be written as

X = X(m

) + L(y) , (2.6)

where L depends on X(m) as well as the (unknown) distribution function F.

By Eq. (2.6)

S(X; )
Xq * X(m) + L(]og -——éml—> , 0<qgcx< S(X(m)) . (2.7)
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This suggests estimates ;q of xq having the form

. o S(X ) .
g = Xm) * L(]og —_éﬂL) > 0 <assty)

~

It is natural to estimate S(X(m)) by S(X(m))= m/n. This leads to

= ) n m
xq = X(m) + Léog nq> , 0<qgcx< . . (2.8)

Consider for example a distribution function F belonging to the two-

parameter exponential model. Then

F(X) =1 - e-(x-r)/a y X 27T ,

where -» < 1 < o and a > 0. Correspondingly,
LUx) == , x>1 ,

and

If a is estimated by

i
!




and L(y) = ay by

E(y)=ay , ¥y>0 , (2.9) L

Eq. (2.8) reduces to the exponential tail estimator described in Subsection2.1.

A natural extension of Eq. (2.9) is estimators of L having the form

f(y)=ay+-2—y ,» ¥2>0 s (2.10)

where the additional term b y2/2 hopefully properly takes into account small
to moderate departures of the tail of F from the two-parameter exponential

model. Together, Eqs. (2.8) and (2.10) yield the estimator.

~ ~ - 2
X+ X(m) + a log LI g-(log %%) , 0<qgcx

m
] 2 <02

It is desirable that xq be a nondecreasing funct{on of 1/q. This is

true for the estimator given in Eq. (2.11) if a and b are nonnegative. Other- ¥

wise the estimator can be modified in an obvious way to make it nondecreasing in

A

1/q [set‘;q = xq for 9<q,> where 9 is chosen as large as possible subject to the

0
constraint that L given by Eq. (2.10) is nondecreasing in y for 0 < y < log (m/nqo)].

In ordervto determine specific choices of the quantities a and b

appearing in the definition of L, it will be assumed that

L) =ay+ 3y, y20 (2.12)

where a > 0 and -=» < b < =, Of course this can be exactly true only if

b > 0, so the following discussion is "formal" if b < 0.




By Egs. (2.7) and (2.12)

S(X(p)) S0 () 2

= + m "'Q m

xq X(m) a log 3 > [109 3

If m is reasonably large, then m/n = g(X(m)) : S(X(m)) and hence

2
m . b m
X + — + —
Xq = X(m) * 2 Tog ngt 2 éog nq)

Set
L = log #%—and N = % log ﬁ%
Also let
8=a+Nb
be considered as an estimator of
6 =a+Nb

Then Eqs. (2.13) and (2.11) can be rewritten, respectively, as

X 2 X( + L8

m)

and

A

*q

X(m) + L6

Similarly a confidence interval J = [g,é] for 8 yields a confidence interval

I = [5q,xq] for Xq» Where L X(m) * L& and X, = X,

17
q m) Le.

(2.13)

(2.14)

(2.15)
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[t is natural to consider estimators 8 of 5 which are linear combina-

tions of X(k) - X(m)’ 1 <k <m, with constant coefficients. Such an

estimator can be written in the form

A m=1
9 = %k o Xy = Xaend (2.16)

It will be shown in Appendix [ that the expected value of such an estimator

8 is given by

~ m=1 m-1
£ g = §wka+<§uk mk>b , (2.17)
where
m-1
1
b= S T
k 3=k J

Given an integer J such that 2 < J < m, set

L1 % ;%
073 ¢ Do Xl = o 2 B e

By Eq. (2.17)




It is easily verified that

[

Consequently

It is well known that
. m=]
le > % - log (m-1)
j=1

where y is Euler's constant. Thus for large values of mand J <m

so SJ is an approximately unbiased estimator of 8 if

or, equivalently, if

(2.18)

(2.19)
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Suppose from now on that Eq. (2.19) holds. It is shown in Appendix I that

2

Var(3)) = gy [a + (1+N)b1% + (142 )b (2.20)
where
WER ;—}
Equivalently
Var(3)) = 37 [(a+b)? + (13 6] . (2.21)

Suppose now that (§d - 9)/SD(§5) has approximately the standard normal

distribution. Given 0 < a < 1 choose 21/2 such that
=, e ,
j Fe dx=-2— .
/2 2T ‘
Then
P{-zgt/2 SD(SJ) < SJ -2 < 21/2 SD(SJ)) 21 -y . (2.22)

S )2 < zi/z Var(§J) . (2.23)
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Set y = za/z//JTT'. By Eq. (2.21), Eq. (2.23) can be rewritten as

(5,-8)% < ¥¥L(o+b) + (141 ))b]

This inequality can be solved to yield the interval 87 < 6 < 5% where

= Syt at b e (Se? + 62 (1) (1)
37 2 . (2.24)
2
T -

In order to get calculable estimates it is necessary to replace b in

~

Eq. (2.24) by an estimator b. By Eq. (2.18)

~ S,-5
b-J _m (2.25)

oV
is an unbiased estimator of b. This leads to the confidence interval [2}5]

for 8, where 9 and 3 are given by

S, P b a(E0)% + B2 (1) (1)
,B1 = 5 . (2.26)
-y

{a
2

Let T

[5q’;§] denote the corresponding confidence interval for Xq determined

by Xq = X(m) +L g and ;a = X(m) + L 5. This is called the quadratic tail

confidence interval procedure. It is location- and scale-invariant. That is,

if x(l),...,x(m) are replaced by t + d X(1),...,r +d X(m)’ where d¢ > 0, then
x_and x_ are replaced by 1 + d x_and t +d x_.. LA modification to this
-q q -q q

orocedure in which Aj is replaced by zero in Eq. (2.26) will be discussed in

Subsection 2.4.2.]
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2.4 MONTE CARLQ EXPERIMENT

A Monte Carlo experiment was designed and run to compare the performance
of the confidence interval procedures described in Subsections 2.1 through 2.3.

2.4.1 Experimental Design

The experimental design is a modification of the one used in Breiman,
Stone and Gins [2]. Twenty underlying distribution functions were considered.

They are conveniently defined in terms of four groups, each having five

h th

distribution functions. Let F,. be the jt distribution function in the i

1]
group. They are determined by means of a common prescription. Given i, a

distribution function Fi of a positive random variable Xi is chosen as are

five positive constants bj =b 1 <j <5, Then Fij is defined to be the

ij?
distribution function of the random variable Xi j. The distribution function
Fi and five constants in the various groups are determined as follows:

1) (Weibull) F] is the standard exponential distribution function

defined by Fi(x) = 1 - e™® for x > 0 and F(x) = 0 for x < 0, while b, = .5,
b
= = = = i = - =Xj
b2 = .75, b3 =1, b4 1.5 and b5 2. [Note that Fij(x) 1 - e 7J for

x>0and 1 < j <5.]
2) (Mixed Weibull) F2 is defined by F2(x) = [F](x) + F](x/5)]/2,
while b = ,84, b

= .6, b = 1.04, b4 = 1.38 and b5 = 1.65.

1 2 3
3) (Lognormal) F3 is defined by F3(x) = ¢(log x) for x > 0 and
F3(x) = 0 for x < 0, where ¢ is the standard normal distribution function,
while b1 = .81, b2 = 1,37, b3 = 2.11, b4 = 4,56 and b5 = 10.81.

4) (Mixed lognormal) F4 is defined by F4(x) = [F3(x) + F3(x/5)]/2,

while b] = .88, b2 = 1.41, b3 = 2.01, by = 3.52 and b5 = 5.60.

|
4
i
|
|
|
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To explain the choice of the constants bij’ let the tail heaviness

of a distribution function F having upper .l-guantile X1 be defined as
-2"(x.])/[£'(x_1)]2, where 2(x) = -log[1-F(x)]. As pointed out in Reference 2,
the tail heaviness is a reasonable measure of the departure of the upper tail
of F from exponential form. It equals zero for distribution functions
belonging to the two-parameter exponential model and, roughly speaking, is
positive for distribution functions having heavier (i.e., more slowly
decreasing) upper tails and negative for distribution functions having
Tighter tails. The heaviness of the Weibull distribution functions
F]l""’F15 defining the first group are respectively .43, .14, 0, -.14 and
-.22. The constants b1j’ 1 <J <5, were chosen so that the five Weibull
distributions provide realistic approximations to a variety of data that have
arisen in a number of air poliution studies. The constants bij’ 2<ic<4

and 1 < j <5, were chosen so that Fij has the same tail heaviness as

F]j'

The sample size n took on the values 100, 200, and 400. Given n

and the underlying distribution function F = Fij’ purported 50% and 90%

confidence interval procedures I for x]/n were compared with respect to

Pelx, < 1), Pelx, > 1), PF(xq ¢ 1) and EF([I[/xq). These quantities were

q q
estimated by averaging over 600 replications.

2.4.2 Results

Two-parameter exponential, two-parameter Weibull and quadratic tail

confidence interval procedures were compared for various values of m selected

more or less by trial and error (only some of which will be presented). Since
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the results for the purported 50% confidence interval procedures were

qualitatively so similar to those for the corresponding 90% confidence
interval procedures, only the results for the latter procedures will be
discussed.

Although the performance of the various procedures depends somewhat
on which of the four families the underlying distribution function Fij belongs
to (indexed by i), it mainly depends on the tail heaviness of the distribution
function, indexed by j. For this reason and for simplicity the results are
presented after being aggregated by averaging over the four distribution
functions having each given tail heaviness (i.e., by averaging over the four
values of i for each j). An overall aggregation, obtained by averaging the
results over all twenty underlying distribution functions, is also presented.
See Tables 1 through 3.

Table 1 summarizes the results for n = 100. In column one the confi-
dence procedure being used is described. In column two the tail heaviness is
indicated by noting the value of the shape parameter bij which yields a
Weibull distribution having the given tail heaviness. Thus the shape parameters
.5, .75, 1, 1.5 and 2, respectively, correspond to the values of .43, .14, 0,
-.14 and -.22 for tail heaviness. The overall average is indicated by AVG.

Column three (% L is short for % Left) shows the indicated average of

PE. .

(x, < T) x 100%
1) g

rounded off to the nearest integer (for simplicity and to provide a realistic
indication of accuracy). Similarly column four (% R is short for % Right)

shows the indicated average of

Pp. (xg > T) x 1004,

Fij
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Purported 90% Confidence Intervals for x]/

n

TABLE 1. SUMMARY STATISTICS FOR n = 100

Procedure Shape s %R % Length
50 6 7 13 168

75 6 7 13 94

100 6 7 13 65

W(is) 15 6 7 13 10
200 6 7 13 28

G 6 7 13 79

50 4 9 12 125

75 3 710 9

1500 2 8 10 75

Q(40) 150 3 9 1 51
200 3 9 12 38

G 3 8 11 77

50 7 19 27 77

75 6 9 14 67

100 5 5 10 57

E(15) 150 5 2 8 13
200 6 2 7 33

NG 6 7 13 55

50 10 12 22 101

5 7 7 14 80

100 5 5 10 65

e(10) 150 4 3 7 15
200 4 3 7 35

NG 6 6 12 66

50 5 13 18 95

75 3 5 8 82

. 100 3 2 s 71
E(15: 952) 150 2 1 g 53
200 2 1 3 a1

G 3 5 3 68




a

Purported 90% Confidence Intervals for X1/n

~ TABLE 2. SUMMARY STATISTICS FOR n = 200

Procedure Shape %L %R % Length

50 5 7 12 125

75 5 7 12 74

1.00 5 7 12 52

W(20) 150 5 7 12 32

200 5 7 12 23

NG 5 7 12 61

50 4 7 12 104

75 3 6 9 80

1.00 3 7 10 62

Q(60) 150 39 12 42

200 3 10 13 30

AG 3 8 1 64

' .50 7 16 23 73

75 8 8 14 61

1.00 5 5 1 51

E(15) 15 5 3 8 37
200 6 2 8 28 {
G 6 7 13 50 1

50 8 11 20 94

75 6 6 12 72

100 6 4 10 58

E(10) 150 5 3 8 40

200 4 3 7 30

AVG 6 5 T 59

50 5 11 15 90

75 3 4 8 75

) . 6
s 1811 1B |

200 2 1 3 34

G 3 4 7 61
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‘

Purnorted 90% Confidence Intervals for X]/n

TABLE 3. SUMMARY STATISTICS FOR n = 400

Procedure Shape sl %R % Length

50 4 8 12 99
75 4 8 12 60

100 4 8 12 43

} W(25) 150 4 8 12 26
200 4 8 12 19

ANG 4 8 12 19

50 3 9 12 %0

75 3 7 10 59

1200 3 8 1 54

Q(80) 15 3 9 12 36

200 2 11 13 26

NG 3 9 12 55

50 6 16 22 67

75 5 8 13 55

100 4 6 10 15

E(15) 150 4 4 8 32

200 4 3 8 24

NG 5 7 12 14

5 8 11 19 86

75 5 7 13 65

1700 5 6 10 52

E(10) 150 4 4 8 35

200 4 3 7 26

AVG 5 6 T 53

50 4 10 14 83

7% 3 5 8 63

, 100 2 3 6 55

E(15; 982) 1750 2 2 4 39

| 200 2 1 3 29
AG 3 4 7 55




and column five shows the indicated average of

P (xq ¢ 1) x 100% ,

Fij

the numbers again being rounded off to the nearest integer. Finally, column
five shows the indicated average of

EFij(IIl/xq) x 100%
rounded off to the nearest integer.

Let E(m;]OO(]-a)%) denote the (purported) 100(1-a)% two-parameter
exponential confidence interval procedure based on X(]),...,X(m) and let
w(m;IOO(l-a)%) denote the analogous Weibull procedure. It was discovered
empirically that the purported 100(1-a)% quadratic tail confidence interval
procedure given by Eq. (2.26) yields coverage percentages typically greater than
100(1-a)% and hence to unnecessarily long intervals. To correct this defect
and to simplify the resulting procedure a modified quadratic tail procedure
was employed in which AJ is replaced by zero in Eq. (2.26). This procedure is
denoted by Q(m;]OO(]—a)%). Set E(m) = E(m;90%), W(m) = W(m;90%) and
Q(m) = Q(m;90%).

The results for W(15) in the columns of Table 1 headed % L, % R and
% are identical in the various rows because of the power invariance of the
Weibull procedure. The average coverage percentage of W(15) is 87%. This
suggests replacing W(15) = W(15;90%) by say W(15;92%) in order to obtain
average coverage percentages of 90%. The modification would cause a small

increase in the average length of the confidence interval.
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The average coverage percentage of Q(40) is very close to 90%, but

the average percentage of time the true value lies to the right of the
interval is 8%, which is significantly larger than the desired value of 5%.
This suggests that a better modification to Eq. (2.26) than replacing XJ by
zero might be to keep A, in Eq. (2.26) but adjust.Y separately for § and § so
that the average percentage of time the true value lies to the left of the
interval and to the right of the interval both equal 5%. This modification
would undoubtedly cause some increase in the average length of the confidence
since the right end-point of T is more sensitive to changes in the confidence
level than the left end-point.

The suggested modifications to W(15) and Q(40) would presumably lead
to procedures having similar behavior. Since W(15) requires substantially
more computations to implement, Q(40) appears to be the preferred procedure.

The average coverage percentage of E(15) is the same as that of
W(15), namely 87%, so E(15;92%) should yield average coverage probabilities
of very close to 90%. A more serious defect is that for the heaviest tailed
distribution functions, the true value lies to the right of the E(15) con-
fidence interval 19% of the time. On the other hand, the average length of
E(15) is substantially less than that of Q(40). This suggests modifying
E(15) to improve its average coverage percentage for the heaviest tailed
distributions at the expense of increased average length. The results for
two such modifications, E(10) and E(15;95%) are shown in Table 1. Clearly
E(15;95%) is the better of these two procedures. It is aiso clear that still i

better modifications to E(15) could be obtained by keeping M = 15, keepning
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the left end-point of the interval more or less unchanged, and increasing
the right end-point [by setting xq = X(m) + z a for some z > 2‘975].
A similar analysis can be made of Table 2 and Table 3 for n = 200

and n = 400, respectively. The details are left to the reader.

2.5 CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY :

The results of the Monte Carlo experiment cleariy indicate that the
task of obtaining robust confidence intervals for the extreme quantile X1 /n
is feasible and that.the two-parameter exponential and quadratic tail
procedures are promising and deserve further study. But no definitive
statement can yet be made that any particular procedure is best.

One attractive procedure that has not been tried out is to 1) use
the upper (say) [n/2] order statistics adaptively to choose a positive
number o such that the empirical distribution of X?1) - x?[n/Z])""’
x%[n/Z]-]) - x%[n/Z]) is "close" to being exponential; 2) apply a (possibly
modified version of) E(m) to the transformed data X?1),...,X%m) obtaining

an interval [éq’;a]; and finally, 3) apply the inverse transformation to

obtain the confidence interval [ 1/ ilﬁlj_

LS
A similar procedure for obtaining point estimators of xq was suggested
in Reference 2. Surprisingly, when itwas tried out, theoptimal value of m in the
sense of mean squared error turned out to be m = n/2. A smaller value of
m is probably "best" for the confidence interval problem, Indeed, it has

gradually become clear that the confidence interval problem differs from the

point estimation problem in one important respect that is not readily
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apparent--namely that controlling bias is much more important for confidence
interval procedures than for point estimators with squared error loss.

To see why this is so in the simplest possible setting, suppose that
an estimator 3 of 8 is normally distributed with mean 6 + 8 and known variance
cz, where the bias 8 satisfies |8| < b for some known number b. Then the

2 2

maximum possible mean square error of 8 is o~ + b™. Let 0 < a <1 and let

z be defined so that
af2

Consider the confidence interval T = [8 + T 8 + 12], where T is chosen as
large as possible and T, is chosen as small as possible subject to the con-
straints that P(¢ < o+ T) < a/2 and P(s > o+ T5) < /2 regardless of
se[-b,b]. Then 7, = “2,p 0 -band 1, =2z ,0+bso |T| = 2(2(!/2 o+ b).
For simplicity let a be chosen so that z , = 1. Then |T] = 2(c + b). For

a numerical examplelet o =1 and b = .5. With respect to the mean square error
2

g + b2, 8 is exactly as good as an unbiased estimator having standard devia-

tion ¥1.25 = 1.12, but with respect to the length 2(c + b) of the corresponding

confidence interval procedure, the unbiased estimator is much better.




3. QUADRATIC TAIL APPROXIMATION

3.1 THE QUADRATIC TAIL FIT

Given a distribution function F(x), the general tail fitting model

h highest order statistics, starts with

. t
for x > X(m), where X(m) is the'm
writing 1 - F(x) as *

- 2(x) - 2lx, )
1 Fx) = 01 - Flxppy ) e (m) ,

assuming some parametric form for 2(x) - Q(X(m)), and then using this fit
to estimate extreme values. In general, a convenient form for defining a

tail fit model is to write

2(x) - Q(X( )=y, x> X(m) | : (3.0)

m)

then solve to get
X - X(m) = L(,Y) . (3.])

The fit is more easily defined in terms of the L(y) function. For instance,

the exponential tail approximation is defined by taking

]

L(y) = ay

or, equivalently,

2(x) - z(x(m)) = [x - x(m)]/a
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Then assuming m large enough so that

] - F(X(m)) = m/n

"
he)
-

we get the model

1 -F(x)=p e-[x ) X(m)]/a
This model has been used with success (considering its simplicity) in
previous work to get estimates of percentiles high up in the tails of
distributions such as lognormals, Weibull's and mixtures of these. The
distributions whose tails we are attempting to approximate range over the
exponential class--that is, distributions such that the maximum of n readings

has, asymptotically, the first extreme value distribution. However, the

asymptotics generally require a sample size much larger than usually available.

For instance, our interest in the problem arose in air pollution where the

interest is in estimating the expected maximum or second highest maximum of

365 readings. ]
If one has n observations as data, say xT""’Xn’ then attempting to

estimate the expected maximum of N readings, N>>n, requires the assumption of

a parametric model that is valid far beyond the range of the data. The range

of interest to us is the range in which 1 - F(x) = a/n, 0 < a < 1. This

range is of interest for two reasons. First, given n observations X],...,Xn,
the above range is the most extreme range that is, in some sense, “within 4
reach” of the data. Second, many practical questions are of the form, Given %
these n observations, how can the expected max of n observations be estimated :

from them? i
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For example, the median of the max of n opbservations 15 lJetined 3%

the solution of
1 - F{x) = log 2/n

Furthermore, much of the classical extreme value theory is based on the

x value satisfying
1 - F(x) = 1/n

Then, even to be able to apply the classical theory, this pcint must be

estimated from the data.

ror distributions whose maximums are in the domain >f attraction °f
the first extreme value distribution, it is known that

Tim P(Xox+y  X>y) - e X >0

Yoo
This result gives some theoretical justification for the exponential tail
approximation. But, as we mentioned above, & substantial sample size is
required for the tail of the observed observations to closely follow a
conditional exponential distribution. Further discussion of this issue

will be given when the concept of tail heaviness is introduced (Subsection 3.3).

In order for the tail exponential to be a reasonable approximation the

tail of the distribution cannot be either too "heavy" or too "light". Ffor
example, a useful intuitive notion of the range of usefulness 1s that the

approximation works reasonably for Weibull distributions




1 - F(x) = e_(x/s)1

for  in the range [1/2,2]. Put another way, the "curvature" of the tail
_corresponding in some way to <{x)] cannot be too far from constant over the
range for wnich the tail approximation is to be used.

In this project, a search has been made for models that will give a
second order approximation to the tail shape, where the exponential tail fit is
considered the first order approximation. A useful model is a quadratic tail

fit defined 2s ‘ollows: As before, let

dx) - l(X(m))

n
<
>
\%
>
3
~

(m)

3ut now take
, b 2
Liy) =ay+57 . v>0 . (3.2)

Jur work with this model has shown that in certain areas it produces
significant results in the tail estimation problem. The following subsections
g3ive a discussion of: 1) how the distribution of properties of the model
are orouted; 2) the concept of “"tail heaviness" and estimates of the tail
23t 7 atesy 3) the use of the model to estimate the expected maximum and
zuantites in the range specified above; and 3) the use of the model to derive
_iridence intervals for parameters such as the extreme quantiles and the

eI ted T3 imum,




3.2 DISTRIBUTIONAL PROPERTIES OF QUADRATIC TAIL ESTIMATES

AND AN APPROXIMATION

For any tail fitting method defined by Eqs. (3.0) and (3.1), the

distributional properties are simplified by the following observation: 1
Proposition 1. Suppose Egs. (3.0) and (3.1) hold exactly. Let i

X(]) > el > X(m) be the m highest order statistics. Let

E(]) > i > E(m-]) be the order statistics from a sample of

size m-1 from an exponential distribution. Then the joint

distribution of

X(k) - X(m) ', k = ],...,m‘l

is the same as that of the variables L(E(k))’ k=1,....m=1.

Proof. The variables F{X )= U have the distribution of uniform order
—_— (m) (m)

statistics. Thé model assumptions lead to

1 - U(k) = [] - U(m)] e
or

- log (1-uk) + log [1-u(m)] = z(x(

But for k > m, the lefthand side of above has the joint distribution of

E(]),...,E(m_]). Hence, writing,
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and using Eq. (3.1) gives

The derivation of the distributional properties of the various
statistics based on the quadratic model is gotten by using the fact that,

in consequence of proposition 1, the joint distribution of

X(k)‘X(m) ,k= |,...,m-]
is equal to that of
b 2 -
a E(k) + ? [E(k)] Y k - ],...,m-] 0 (3.3)
Suppose, now, for example, that we want to estimate the quantile X;/n
defined by
* _ 1
1 - F(X1/n)- H
Write

1 - F<xT/n> =1 - F(X(m))]e-[z(x1/n) ) Q(X(m))l

so then, using 1 - F(X(m)) = m/n we get
*
Tog m = 4(xy 0 ) = (X

Therefore, using Eq. (3.0), Eq. (3.1) again is

+*
X1/~

X

m) L{(log m) = Tog m + b(log m)%z




resulting in the estimate

*
X]/n = X(m) + logm [; + <19%J3> b]

Thus, the problem becomes to find a good estimate for the parameter

a+<m%m>b

Similariy, estimating the expected max, the second highest maximum, etc., can all

be formulated in terms of finding estimates for a parameter of the form
8 =La+Mb (3.4)

where L,M are known. Since X(j) is a linear expression in a,b then it is
natural to look for estimates of 9 that are linear in X(j)’ J<m It s
convenient to write these estimates as

~ m%]

B = T k u)kEX(k) - X(k+])] . (3.5)
Estimates of this type can be easily computed from the data once the values
of ~) are given.

In Appendix I, the mean and variance of the estimate of Ea. (3.5) are

derived. The main results are

where




Thus, the conditions for an estimate to be unbiased are

(3.8)

The variance of = is given as follows: ODefine

h = (b/a)
S
=< 3.9
R (3:9)
m-1
k K’
then
Var(3)/a2 = 'S (it et b 2,252 2 (3.10)
7% R Mk 7% Yk :
Note, incidentally, that for
(Dk = ]/m-] Y
~ 1 m-1
P 2 By - K]

which is the estimate of the mean in the exponential tail approximation.
Using Eq. (3.10), minimum variance unbiased estimators can be derived as

well as estimators that minimize the least squares loss for given values of

a/b. The details will be discussed in Appendix II.

h =
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However, minimizing Eq. (3.10) even with a small approximation as done
in Appendix Il [the last term of Eq. (3.10) is discarded] leads to calculations
v which necessitate a small computer or hand programmable calculator. For
this reason we looked at an approximation which is applicable not only to
quadratic L{y), but general L(y).

Write

]
?
)
b

T e—

%k we[L(E) - L(E )]
Using a first order Taylor expanston

LEgy) - L(E(k+1)) = [ = Eqeen) ]L (E + G[E(k) - E(k+])])

If L'(y) is slowly changing, then the approximation

Uy * 86 = Eeup)) = U (EE ) = L)
seems reasonable. Now

E(k) ) E(k+1) =L/k s k=1,...,m1

where Z]""’Zm-] are independent unit exponentials. Thus

~ m§] .

Then the va~iance of 9 is




The expectation is

~ m-1
£(3) = 2w L' (ny)

Suppose that L(y) = L(y,8) depends on some multidimensional parameter 8,
and suppose that § is an estimate ofs(R). Then § is approximately unbiased

if

8(8) = 2 w L'(n.8)

To get the minimum LSE estimate at 8 = go, Took at the square error

LSE = Var(s) + 8%

where

- S
B =9(8y) - eyl (1B

To minimize the LSE, take its derivative with respect to w,, getting

2
wk[L (“k,ﬁo)] -B L (weB) =0

SO

Wi = B/L (1y08,)

0
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Not unexpectedly,if L'(y) is incraasing, the coefficients w, decrease and

k
conversely. For L(y) = ay, the coefficients w, are constant, giving the

exponential tail approximation. B can be evaluated using

B=68(8) - 2w, L (b sBg)
= e(ﬁo) - (m-1) B
SO
B = e(go)/m

If we want to get an unbiased minimum variance estimator of go,

) = Zuk L' (uk,B

~

then we minimize Var(8) subject to 8( ). This gives

% 0
the same solution as above.

Something different can be done with the quadratic tail approximation
to produce estimators that are unbiased over the entire range of a,b for

which the tail fit is reasonable. The LSE minimum estimator of 80 = L 24 + M bO

is given by
La, +Mb L+Mh
T T TR
- ¥ ¥
% " 0 "k
; and will give Tow LSE only in a vicinity of h = ho. The unbiased requirement,

however, can be put in terms of a and b separately because of the linearity

in a,b. That is, we can write




[@s]
"

La + Mb

| - ,
r Ee-azmk+b Ewkuk
F

and require that the Ly satisfy both

and
= Y,
M _uﬁkuk
Minimizing the variance under these two restrictions at h0 gives

At My

' 2
(1 +h0yk)

where AO and \] are determined by the constraints.

However, every estimator we have simulated which satisfies the two
E above constraints, no matter how complicated or simple it is, has had small
bias for all distributions tested except the heaviest tailed lognormal.

We give some evidence in Appendix II that the approximate solution

gives results very close to those of the exact (well, almost!) solution.

3.3 TAIL HEAVINESS ESTIMATES

In the previous report on work in this area, a definition of tail
heaviness was proposed as meeting certain reasonable requirements (Reference 1,

pp. 18-20). The characterization did not consist of a single number, but was a
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local measure of the curvature of the distribution. The tail heaviness

H(p) at p, 0 < p ¢ 1 was defined as follows: Let
Y(x) = 2" (/0 (), x>0

and set

where xp is the pth quantile of the distribution. For exponential distribu-
tions, H(p) = 0. A positive value of H(p) corresponds to a tail that is
"heavy" relative to the exponential, and a negative H(p) to a tail lighter
than the exponential. For the Weibull and lognormal distributions studied

in Reference 1, the tail heaviness is tabled below.

Weibull
b

5 75 1.0 1.25 1.5 1.75 2.0
3 .83 27 0 -.17 -.27 -.36 -.42
.62 .21 0 =12 -.21 -.27 -.31
’ ] .43 14 0 -.09 -.14 -.19 -, 22
p 05 33 1 0 -.07 -1 -.14 -.17
.01 .22 .07 0 -.04 -.07 -.09 -1
L0051 .19 .06 0 -.04 -.06 -.08 -.09
’ 001 | .15 .05 0 -.03 -.05 -.06 -.07




Lognormal

.5 .75 1.0 1.25 1.5 .75 2.0

.3 1.17 .60 .31 14 .02 .06 -.12

2 1.03 .55 .31 17 .08 .01 -.04

. .68 .36 .20 A1 .04 .00 -.03

D .05 .61 .34 .20 12 .07 .03 .00
.01 .52 .29 19 13 .09 .06 .03

.005 .46 .27 7 .12 .08 .05 .03

.001 .39 .23 .15 .10 .06 .04 .02

For the Weibull's with b = .75 to 1.5, and for the lognormals with
b > 1.25 there is a minimal curvature problem for p <
problem is more severe for the extremely heavy and light tailed Weibull's
and the heavy lognormals.

on the condition H(p) -~ 0, the size of H(p) for these latter distributions

.

The curvature

Since the asymptotic extreme value theory depends

for p as smail as .001 indicates the inapplicability of the theory for fairly

large sample sizes.

Using the quadratic model we have:

Proposition 1. The tail heaviness at p = 1 - F(x(m)) is equal to

h = b/a




Using

f gives

Therefore, at x

tail heaviness.

b 2
X-X(k)=a_y+—y :
i
. j
E§ = a + by
]
d2x = b
=5 =
dy
K ory o
-y(x(m)) =b/a =h
Therefore, the quadratic model can be used to get estimates of the
For a simulation we constructed four estimators. The first
three were of the following type: Denote

~ ]
< = —_ - .
ST o+ Uy K]
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? Then we used a split half approach and look for a linear combination
¢ Stmy21 * 0 5m

which will give an unbiased estimate of b. Using conditions in Eq. (3/8) gave

the result
£ Wy

The selection of the denominator posed a problem. Using an unbiased
estimator for a gave a noisy estima;e for h. Finally, we decided to use
§h as the denominator. For the last estimator we used an unbiased estimator
at b whose variance was a minimum at h = ,25.

For the simulation, we used a sample size of 200 with the Weibulls

and lognormals as above. Three different values of m were selected,

m = 20, 30, 60. The first three estimators, then, had the form

~ §
hy = [m/2] _ 1), m = 20, 30, 60
[m/2] Sm

For the last estimator m = 60 was used, and it is denoted by EGO'
Altogether, 1000 runs were made, each run generating the top 60

order statistics of the 14 distributions using Marsaglia's "Super-Duper" uniform

random number generator, and using the inverse transformation to get the

order statistics of the distributions desired. The results are tabled below,

giving the average and the standard deviations of the estimates.




Weibull

b
5 .75 1.0 1.25 1.5 .75 2.0
. AV | .258 .083 -.003 -.053 .086 .109 =126
20 Y sp | .329 315 .307 .303 .300 .298 .296
. av | .314 .105 .003 -.057 .097 124 185
304 sp | 275 .262 255 250 248 246 244
. av | .422 134 -.008 -.092 .146 .184 =212
60 } sp | .199 .188 181 177 174 A7 170
2 AV | 427 134 -.006 -.087 140 177 -.204
60 Y sp | .187 .159 148 142 139 137 136 l
Lognormal
b
5 .75 1.0 1.25 1.5 .75 2.0 ’
. AV | 525 .296 .180 a1 .066 .033 .010
20 Y sp | 377 .357 .344 .335 330 .327 324
: { AV | .592 .33] .198 119 .068 .031 .004
30 Y sp | 309 .290 277 269 .264 .260 .258
: AV | .693 371 .205 107 .043 .002 -.035
%0 Y sp | .230 217 .207 201 197 .194 192
: { av | .745 .388 214 113 .049 .004 -.030
60 Y sp | .273 .218 .190 177 169 164 161
Since the denominator is an unbiased estimate of a + b, instead of a,
the estimates tend to reflect the values of H(p) at values of p larger than

close to H(.1). The averages of hyg are close to H(.05), and the averages of

A

hyqg are slightly above the H(.01) values.

m/n. For all 14 distributions, the estimates h60 and 560 have average values




64

Of course, the smaller m is, the higher the SD's of the estimates.
In use, either 360 ar ﬁ60 is preferable 1in terms of variance, if p = .1
is in the tail range of interest in the problem. Note that ﬁ60 aimost
always has a significantly lower variance than ;60’ but this has to be
balanced against the difficulty of computing the coefficients.

[f these estimates of tail heaviness are used to detect departure

from exponentiality, then, using a 2SD rule of thumb, the true value of

H(.1) would have to satisfy |H(.1)| > .3 before the departure could be

reliably detected. Thus, only the curvature of the heaviest tailed Weibull
and the two heaviest-tailed lognormals can usually be detected. However,
these are the distributions that cause the largest absolute errors in the

exponential tail estimates.

3.4 ESTIMATES OF THE EXPECTED MAXIMUM
As a test of the gquadratic model and exponential tail estimators, a
simulation study was designed to estimate the bias and variance of a variety

of tail estimators of the expected maximum of the 14 Weibull and lognormal

distributions.

Twelve estimators were computed and compared, again using a sample
size of 200, 1000 runs, the Marsaglia random number generator and inverse
functions.

The twelve estimators were in 4 groups: 1) the maximum X(T) was
used as an estimate for € X(1); 2) three exponential tail estimates
corresponding to m = 20, 30, 60; 3) four quadratic minimum variance

unbiased tail estimates with the variance minimized respectively at

S —— ———_ —— =




h = .5, .25, 0.0, -.15 using m = 60; 4) four quadratic minimum squared error

estimates with the minimization carried out at h = .5, .25, 0.0, -.15 and

using m = 60.

The quadratic model was used to construct the third and fourth

groups of estimates. The derivation is based on the following:

Yy =Xy = Xyt X

Now by the model

(1)~ Ky T2 E

Use the fact that

and

)2 4 2

m
—
m
—
—_—
~—
~—
)

= (}l]

For m = 60, ) = 4.655, u§2) = 1.645, so,

E(X(]) - x(m)) = 4,655a + 11.657b

Therefore, estimating the parameter

: = 4.655a + 11.657b

by + gives tne estimate Kigy * = for & K1y
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Denote by RMSE the root mean squared error. The tables below give

the value of E X(]) and the RMSE of X(]) as an estimate of E X(]).

Weibull ‘

b 5 75 1.0 1.25 1.5 1.75 2.0 i

) 6.2 10.7 5.9 4.1 3.2 2.7 2.4 f
RMSEX (] [17.2 3.2 1.3 .70 46 33 .25
i

Lognormal |

EX 1) 63.2  14.8 7.4 4.9 3.7 3.1 2.7 |
RMSE(X 1)1 [66.3 8.9 3.1 1.6 .98 .63 5] ‘

The RMSE[X(1)] was used as a benchmark, and the ratic of the RMSE's
of all other estimates to the RMSE[X(1)] was computed. The results are

tabled below.

i

e — e —




67
RATIOS OF RMSE's
Weibuli

b
Estimates .5 .75 1.0 1.25 1.5 .75 2.0
exp (20) 61 .61 .66 .73 .80 .86* .92
exp (30) .66 .57 .59 .69 .80* .91 1.02
exp (60) .95 .59 .49 71 1.02 1.30 1.57
UNBMIN (h=.5) .63 89 1.1 1.33 1.55 1.76 1.95
UNBMIN (h=.25) | .65 .83 98 1.12 1.26  1.40 1.53
UNBMIN (h=0.0) | .75 .83 .88 .92 97 1.00 1.05
UNBMIN (h=-.15)] 1.13 R} 1.0 1.09 1,09 1.08 1.08
MINE® (h=.5) L46* .12 2.47 3.69 4.73 5.60 6.35
MINEZ (n=.25) 64 56%  1.39  2.23 2.96  3.56 4.10
MINEZ (n=0.0) .87 .62 .48 .66 95 1.2, 1.47
wne? (0==-18) 1 43 g3 .92 .91 .90 .90 .90%
Minimum .46 .56 .48 .66 .80 .86 .90
*
Minimum value.

Lognormal ) o

b
Estimates 5 .75 1.0 .25 1.5 .75 2.0
evo (20) .48 53 .54 .54 .55 .57 .59
exp (30) .52 .56 .54 51 .50 51 .52
exp (60) 61 .68 .61 .51 44+ AL, .43
UNBMIN (h=.5) 42% 5] 64 .75 .36 95 1.04
UNBMIN (h=.25) | .45 .55 .64 .72 .79 .86 .91
UNBMIN (h=0.0) | .63 .69 .74 77 .80 .82 .84
BTy (m=-.15)] 1.7 4 1.2 1.1 1.10 0 1.0
MINES (n=.5) .54 L37* .42 88 1.37 .81 2.21
1328 (h=.25) .48 .52 .35 43 .67 .98 1.24
wris? n=0.0) .62 .70 .64 .54 .46 .42 a2
ving? (n=-.15) | .92 .91 .91 .90 .90 .90 .90
‘M imum .42 .37 .35 43 e vy .42

b 4
Minimum value.
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The fundamental issue in the behavior of these estimates is the
trade-off between bias and variance. The two estimators exp (30} and

exp (20) have the best overall performance with average ratios of:

Weibull Lognormal
exp (20) ‘ .74 .54
exn (30) : .75 .52

The estimate exp (20) is better at the extreme values of heaviness, where
bias is more of a factor while exp (30) performs better for moderate to
small values of H where its variance is smaller.

The other estimators performed as expected with one exception, dis-
cussed below. The unbiased estimators, as will be shown in the percent
bias tables below, 1ived up to their billing and had very little bias for
any of the distributions except the heaviest tailed lognormal. However, the
payment was in terms of variance. Except near the values of h at which
their variance was minimized, their variances were large and produced
inflated RMSE's. The minimum squared error estimates also lived up to their
billing by producing either the minimum or near minimum ratio near the values
of h at which they were optimized. Their difficulty was that a bias which
is small at one value of h can be large at other values. The large bias led
to large ratios away from the value of h at which they were optimized.

A look at the percent of bias, that is,

100« ==~y

is revealing.
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Percent Bias - Weibull
Estimator 5 .75 1.0 1225 1.50 1.75 2.0
X(1) S T -1 - - A .
exp (20) 20.2 6.2 5 -2.2 -3.5 4.0 -4.4
exp (30) 26.1 8.4 3 -3.6 -5.6 6.3 -7.0
exp (60) 8.6 13.6 -2 275 1.5 S13.4 21447
UNBMIN (.5) 4 -2.9 4 3.8 6.2 8.0 8.9
UNBMIN (.25) 5 <21 5 3.1 4.9 6.3 6.9
UNBMIN (0.0) 5 -9 4 1.6 2.5 3.2 3.4
UNBMIN (-.15) -3 R -2 -4 -6 -6 -8
MINES (.5) 15.3  -28.3  -50.4  -60.7  -64.8 -65.5  -65.1
MINES (.25) 27.2  -8.2  -26.6  -35.7  -39.8 41,1 -41.5
MINEZ (0. o) 39.5  14.6 1.1 6.2 -10.2 S12.2 -13.5
MINES (-.15 1.4 7.4 4.6 2.9 1.8 1.2 5
Lognormal

X(1) 5.3 3.2 2.2 1.7 -1.4 -1.0 -8
exp (20) 421 23.2 13.2 7.6 3.3 2.5 1.2
exp (30) 50.4  29.0 16.8 9.7 5.4 2.3 1.1
exp (60) 63.3  39.3 23.3  13.2 6.8 2.6 -
UNBMIN (.5) 25.6 8.4 3.4 2.3 2.5 3.0 3.5
UNBMIN (.25) 2.1 6.7 2.6 1.7 1.8 2.3 2.7
UNBMIN (0.0) 0.0 2.5 6 2 4 7 1.0
UNBMIN (-.15) | -10.1  -4.7 2.8 -2.0 -1.6 .30 -1.0
quez (.5) 56.2  17.1 8.5 -23.7 =323 237.0 -39.1
MINE (.25) 61.1  28.6 7.1 5.9 213.7 2181 -20.3
MINE (0.0) 63.9  40.2 2.3 14.2 7.8 3.7 9
MINEZ (-.15) 7.9 7.9 6.5 5.1 4.1 3.4 2.9

o —— —
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Notice that the estimators certified as unbiased by the quadratic
model do, indeed, have very small biases. The best is the unbiased estimate
whose variance is minimized at h = 0. Its average percent bias (absolute
values) is 2.0%. The only problem, again, is with the heaviest tailed log-
normal where the bias rises to 10%.

To show that even simple estimates satisfying

AN
L s wk

M= Z Wy My
will be relatively unbiased, we selected an estimate of the form
o S(30) ¥ M S(1s)
The values of kO’ A1 satisfying the two unbiasedness conditions are

kl = (M'L)/Ul5

>
]

=L - X]

b

24
where Wyg © 2 1/k. Using this with values of L,M adjusted to estimate
15

£ X(]) with the top 30 order statistics, the estimator gave the following

bias:

i
]
b
!




Percent Bias

b
.5 .75 1.0 1.25 1.50 1.75 2.0
Weibull .3 -.8 2 1.1 1.7 2.2 2.3
Lognormal]13.2 3.4 .9 .4 .4 .6

Because of the fact that the estimators that minimize the sguared error
are sensitive to the choice of h used, another experimeht was carried out
for the distributions such that H(.1) > 0. In this simulation, the unbiased
estimator E of h = a/b was first computed using the upper 60 order statistics;
then, the minimum squared error estimate corresponding to the value max(H,O)
was calculated. The results are promising, as given in the table below of

the average ratios of the RMSE to that of X(]).

AVERAGE RATIOS OF RMSE/RMSE[X,,y] FOR H(.1) > 0
(1)

!

1 Weibull Lognormal
exp (20) ‘ .61 .53
exp (30) 5 .62 .53
2 step est.j .57 .50

Although the improvemen® is not very large, it is suggestive for future work.

3.5 CURVATURE AND TRANSFORMED TAILS

One somewhat strange bit of behavior is given by the estimates optimized
at h = -.15. On the one hand, their biases are consistently small, doing
better for large positive H values than the unbiased estimates optimized at

positive values of h. We conjecture that this is due to the fact that




72

minimizing the variance at a given value of h does not enhance the general
unbiasedness properties. However, a harder to explain phenomenon is that
the minimum squared error estimate at h = -.15 does not give a significant
decrease in the squared error for the Weibull distributions with negative

H. In fact, for the four Weibulls with negative H, exp (20) is a consistent
improvement on MINEZ(-.15) except for a slight difference at b = 2.0.

At first, we thought that this indicated some deficiency of the
quadratic model for light tailed distributions and that a different method
of selecting the coefficients Sy in the estimate
6 _ m;]

e B Fen)!

would bring the ratio of MSE's down. We concluded that the difficulty was

more fundamental. First we noticed that even with the estimators exp (20),

exp (30), the ratios go up rapidly as the Weibulls become light tailed,

i.e., b > 1. On investigating the cause, it turned out that the difficulty

was not really with the bias (although that contributed) but instead with

the fact that the standard deviations of exp (20), exp (30), were, surprisingly

enough, not that much less than the standard deviation of X(]). The results

are given below.
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SD AND BIAS QF ESTIMATORS
WEIBULL DISTRIBUTION

b
1.0 1,25 1.50 1.75 2.0
N $D 1.38 .70 .46 .33 .25
(1) bias 0.00 0.00 0.00 0.00 0.00
exp (20) | 50 .84 .50 .35 .26 .21
bias  0.00 10 -1 - -1 _
exp (30) | S .75 .46 .32 24 .20
bias  0.02 .15 -.18 -7 -7

Thus, for instance, even if exp (30) were unbiased at b = 2.0, the ratios of
RMSE's would be .80. This led to the conjecture that the essential difficulty
was with the linear form of the estimate; that at least with light tailed
distributions, one could not construct a linear combination of X(k) - X(k+1) i
that was not too biased without a resulting SD close to that of X(1). #j

This led to the idea of seeing how much an optimum or nearly optimum i
transformation could improve the RMSE. If X has a Weibull distribution with
parameter 3 then X* has an exponential distribution. Therefore, given X(m),

the differences

have exactly the distribution of exponential order statistics. That is,

the transformed variables X? ) are exactly fit by an exponential tail. Thus,

k
the exponential tail estimate




to be the estimator

should give a good estimate of E X%]). Then take (;)]/a

of E X(1). We assumed that o was known for the Weibulls. That is, for the
Weibull raised to the power b, we took o = b.

For the lognormals, it is not clear what the optimum transformation is.
We selected the powers o based on a comparison of the lognormal heaviness to
the corresponding Weibull heaviness. So, as a guess, we took the values of 1

n corresponding to b to be given by

5 .75 1.0 1.25 1.50 1.75 2.0

o
i

a=.4 .5 6.7 .8 9 1.0

The results, expressed as ratios to RMSE[X(])] are

Ratios
b

.5 .75 1.0 1.25 1.5 1.75 2.0

Weibull ].44 .47 .49 .49 .50 .50 .51
Lognormal{ .41 .40 .39 .39 .40 .4 .43 3

The Weibull results are a lower bound under the assumptions that only
the top 60 order statistics are used and that the scale is unknown. Of
course, there is the question of how much bias has been introduced by the
approximation E X(]) ~ [E X%l)] ]/2. For the Weibulls, the bias of the

estimate is 3% at b = .5 and less than .6% for the others. The lognormal
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estimates have considerably larger bias at the heavier end, rising to 8%
at b =1.0, 17% at b = .75 and 39% at b = .5. The indications are that
having smaller values of a at the heavier tailed lognormals would have
given further reductions in the ratios.

To get a comparison of the best linear fit based on the gquadratic
model, we ran the approximate solution to the minimum RMSE optimized at
h=.6, .4, .2, 0, -.2. The table below is the minimum ratio over all of

the estimates.

RATIOS FOR "BEST" LINEAR FIT

("Best" = best quadratic model linear fit)

b
f .5 .75 1.0 1.25 1.50 1.75 2.0
Weibull |.50 .49 .48 .66 .95 .95 .91
Lognormalf .43 .41 .38 .38 .46 .42 .42

For all of the lognormal distributions the best linear and the trans-
formed estimates are comparable in terms of RMSE. They are comparable for
the Weibull for b < 1.0.

This gives some evidence that long and short tailed distributions
necessitate different procedures to give good estimates of £ X(]). For the
long tailed distributions a transformation is not needed to "uncurl" the tail;
the appropriate linear combination of order statistics will do almost as well

as the best transformed estimate. In the short tailed cases (Weibull with
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b > 1.0) a power transformation is essential to significantly reduce the

SD of the estimates.

3.6 CONFIDENCE INTERVALS

Suppose that the parameter of concern is of the form
X(m) + La + Mb
If 100% confidence intervals are found for
9 =a+ (M/L)b=a+Nb
say U,U, that is
PlUce <) =1-0Q ,

then 100Q% confidence intervals faor X(m) + La + Mb are (approximately)

given by
[X(m) + LU, X(m) + LUJ

Start by finding a simple unbiased estimator for 3. Take the estimator

to be of the form

(Vg

where

o

-y
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where J is the value to be determined. Since w, = 1/J-1, k < J-1, and zero

for k > J, the expectation of §d is, by Eq. (3.8), equal to

An easy calculation gives

_l_.J§J

T 2 M T Ty

T

Hence J is determined through the equation

The well-known approximation

NCU1/i v log k o+ y
i1

leads to uj-Tog [(m-1)/(J-1)] so that we get the equation

J -1 = (m1) en (N1

To compute the variance of §d, use Eq. (3.10) and the fact that

1/d-1 , k < J-1
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to get
Var(S,) = C, a% + C, ab + C, b
J 1 2 3
where
m-1
2
C,= > wb =179
J-1
2K,
273 < <“k 31 +J-1)
= L [2(3-1) + (31) ]
{(d-1)
e URR
J=1 m=1 m-1
] .
C3= g S e S kf e LT LY
(9-1)% 7 J (J-1)¢ 7
Now
m-1
i
S (1708 = ul?)
J
m-1 m=1 m~1
l u(z) = S 1/.2 = Uy ;
7k T 5k I ;
J-1
< 2 _ 2 !
> (et = (D02t ) +1] - 0y




where

(This last calculation is carried out by writing My T My + uk where

. d-]
G = > 1/§.) Hence
j=k

or, assuming J, say,

Cs

And since 2 + uy = N

Var(§d) = (JI]

Note that iy = (J-1)

Y

(2)

We zan write the above as

Var(SJ

The righthand side of Eq. (3.12) involves the unknown parameters a and b.

However, we can write

1
A can

a + {(1+N)b

U*l'—‘

fa + (1+M)p3% + (1 + Ay) b
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J-1

1/3

0

J=1

U
= 2 eupfen] s
(J-1)
> 10, then
S 2 (2)
= J__*l [(2 + UJ) + (J'1) L‘J
+1,
al + 2(N+1)ab+ (N+1)2

=1 - (3-1)/(m-1).

a+Nb+b=2+0b

b2 + b2[1 + (J-1)
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We can get an estimate of b by using an expression of the form

b= C(S, - 5)

Looking at Eq. (3.8), b will be an unbiased estimate of b if

C = ]/pJ = 1/N-1

The key to the remaining part of the computation is the assumption

that §h has an approximately normal distribution. Under this assumption

Py(-2 + SD(Sy) <5y -8 <z230(55)) =1 -0Q

where SD(§J) is tne standard deviation of §d and z is computed from the

normal tables, i.e., for a unit normal Z,

P(Z > z) =Q/2

Write the inequality inside the probability in Eg. (3.13) as

(36 -6)2 < 22 Var(§d)

or putting v = z/(1-J), and using Eq. (3.12)

2 2

<2 (3 517+ (1 +0y) b7

Simplifying leads to

2

- 23(5, *+ 4%b) - ¥ b

2+xd)+

<0

I
|
ot
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Solving gives the following expression for the roots:

5,m%) £ 5,007 - 202+ (1282 )

1 - YZ

and simplifying the square root gives

— — 2 \
(5, + ¥28) & v (54005 2(18) (1% )
2

T -y

To get computable confidence 1imits, b is replaced by the estimate b.
However, this adds extra variability to the 1imits and tends to make them

too large. To adjust and simplify, we replace the factor 1 + 3 by 1,

arriving at the final form

S, + 92 b+ (5008 + 52(12)
2

T -y

.U -
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4. EXPONENTIAL TAIL ESTIMATES APPLIED TO STATIONARY SEQUENCES

A simulation experiment was carried out to see how sensitive exponential
tail fitting was to the presence of correlation. Recall that if

X(]) 3.X(2) > il > X(n) are the order statistics, then the exponential tail

fit for x > X(m) has the form

-[x-X, \1/a
U= R = 1= Flgy) e (m)
The parameter a is estimated by ;
{
-1
~ B " m

If the exponential tail fit holds exactly, then
X(k) 'X(m)=aE(k) 5 k=],...,m']

where E(]) > ... 3-E(m-]) have the distribution of order statistics in a

sample of size m-1 from an exponential distribution with unit mean. Therefore,

E(X(1) - x(m)) =atE (5(1)) =3y

where

up = S o1/ = log (m-1) + v




where v is Euler's constant. Thus

E X(]) = E X(m) +a M

Estimating E X by X and a by the estimation a of Eq. (4.0) gives the
(m) (m) g

exponential tail estimate

for the expected maximum of n observations.

The stationary time series were generated as follows: Let

- . 2 -
YnH SR MR RVAEE e, s 1,...,199 (4.

where e~ are independent N(0,1) variables. Thus, the Yl""’YZOO form a

Gaussian Markov chain with auto correlation

- olkl
e Yn+k Yk °

They have mean zero and variance one. The actual sequence used consisted

of the lognormal variables

X =ed 3 M o7, .200
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where, as in our previous work,

u = -(log 2)/2bj I = ylog Z/bj

and bj took the values .5, .75, 1.0, 1.25, 1.5. This range included a
very heavy tailed distribution (b = .5) and ranged up to the light tailed
distributions at b = 1.25, 1.5.

Each run was repeated 1000 times using the Massaglia "Super-Duper
uniform random number generator and the Box-Mullen transformation. Since
the exact value of E X(]) was difficult to compute (except for o = 0) the
average value of X(1) over the 1000 runs was taken as the target figure.
Examination of the SD's of X(]) showed that the error in using 7(1) as an
estimate of EX(1) would not appreciably affect the results.

As in our other work, the SD[X(])] was taken as the benchmark. The
RMS error at the exponential tail estimate using m = 30 was computed using

the set of - values
o =0, +.2, +.4, +.8 .

and divided by SD[X(])] to give a measure of the improvement in using the
exponential tail estimate instead of X(])n as an estimate of EX(l).
First of all, it is interesting to note how EX(1) for rather Y(])] is

affected by the correlation. This is tabled below:
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A
| b
1
L5 .75 1.0 1.25 1.5
.8 48.6 12.1 6.3 4.3 3.3
.4 60.9 14.4 7.2 4.8 3.7
52 61.3 14.6 7.3 4.9 3.7
0 61.3 14.6 7.3 4.9 3.7
-2 Loers 14.6 7.3 4.9 3.7
_a ! 61.a 14.6 7.3 4.9 3.7
-.8 60.9 14.3 7.1 4.8 3.6
The actual Y] values are quite insensitive to - except at z = .8.
RMS(EST)/SD[X(])]
| b
!
;.5 .75 1.0 1.25 1.5
s ' .53 .66 .74 .80 .36
! .49 .58 .58 .57 .57
: o 2 1 .52 .60 .58 .56 .55
.0 ; .55 .61 .58 .55 .54
-2 .54 .60 .58 .55 .54
i -4 .55 .60 .57 .55 .54
' -.8 .47 .56 .58 .60 .62
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Interestingly enough, the largest effect of correlation is on the
light-tailed distributions, most pronouncedly for large positive correlation.
On examining the statistics, the reason for the loss of efficiency is not
that the bias has increased. In fact, the exponential tail estimates have
very little bias at p = + .8 for the light-tailed distributions. The
problem is that their variances increase considerably.

At any rate, the exponential tail estimates hold up fairly well,
always have an RMS error less than that of X<]), and are a considerable improve-
ment uniformly for the heavy tailed distributions. Of course, exponentially
decreasing auto-correlation in our example rules out long term dependence,
and one could manufacture examples of stationary sequences with long term

denendence where the exponential tail estimate would give very poor results.
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Appendix 1
MEAN AND VARIANCE CALCULATIONS

This appendix contains the calculations leading to the mean and vari-

ance, under the guadratic model, of the statistic

m-1 \
1

Put Wy = 0 and v, = kw, (k - 1)wk_] to get

<D
"
<
-
—
—~
m
L
~
S
~—

We use repeatedly the fact that the E(k) have the representation

t m-1
Z,
RO
(k) J
J=k
+
where Z], cees Zm-l are independent exponential variables with mean one.

Therefore




30
m-1
Y4
2\ _ k“e
G =fl T
q J,Q/=k
N o
: r * 2
J,Q/=k J: J ’
2 .
i
Hence
m-1 m-1
a b 2 2
E9 =a YHi + 7 ]ZYk[Uk + .-i|£ )]
For any sequence Bk’ k=1, ..., m-1
m-1 m-1
1 1
: using the convention 8 = 0. Hence
E
|
, m-1 m-1
| o kM T “k

and




N

m-1

2 2
Z ke (B = 1

1

m-1
- ZZ“k“k ;
)

m-1
E kaui + uéz)]
1

SO

m-1

m~ 1
Ee=aZwk+b Zukmk
1

1

To get the variance of 8, write

m-1 m-1 m-1
o b
9 aZ‘”ka*’z YkZ
1 k=1 J,2=k
and denoting
min(j,2)
Ao = M3
v 2 72
1
gives
m-1 m-1
8 = a mek + b hjgzj
k=1 J.a=1
[a")
Let Zk = Zk - 1. Then




Taking expectations and using

v N A
EZij = 350 EZijZQ = Zij6j£

gives

2 2
A computation gives E(Zk -1)° =38, E(Z

Lan
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N 2 2 2 2
Var(s) = D th+ 4 D tn +b (8 IEEEDD h;,/k)

17k
Now,
. Imin(j,2)
hjz i ]2 wmin(j,l) ,
SO
1%
"k T 7%
and
m-1 2 m=-1
Z“Jz= Z“J&* hia
j=1 j=1 j=1+1
i
. :
1 1
77 Z‘”J M LTS
1
1o v luy
2707 7%
§
Also

50 denoting




we have

[}

N 2 . 2
Var(8) Z (aw, + 260, )% + 4b Z (s, + 200 )y, * % (Z h

pa 2 2
Z [a, + 2(h, + hy )12+ ab Z nZ

2<k

Note that
h, + h, , = ]y + 1w ;
K Tk T 7% T 7%M
To compute:
2 w?
- 2
4 Z hok = :Z
zik z_k
m-1 2 2
- ‘U(i )‘*’z
=1
where
(2) m-1 :
U = -
2 k2

kk

+
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So finally we have theequation for the variance given in the text:

m-1 n-1
Var(3) = :E:(awk * by, + bwk“k)z N “éZ)wi
k=1 k=1
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Appendix 11

DERIVATION OF MINIMUM VARIANCE UNBIASED ESTIMATORS
ND MINIMUM SQU RROR E

In this appendix the minimum variance unbiased estimators and the

minimum squared error estimators are derived. Writing the variance as
m-1

A m']
8) _ 2 2 (2).2
Va‘”%zl = Z [w *+ hlyy *+ ®)]™ +h Z MR L (I
1 1

The conditions for unbiasedness, if
6 =La+ M

are

Dl Dug M. (11.2) 'f

The minimum variance unbiased estimators, minimized at h, are gotten by
selecting the W, to minimize Eq. (II.1) for a given value of h under the
constraints of Eq.(II.2).

For any set of coefficients Wy s the bias at h is

B=3<L+hM'Z“’k'hZ“’k“k) . ‘

To get the minimum squared error estimate at h, minimize

EVar(6)2+ 821

a
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An exact solution seems formidable. We get an "almost"” solution by

noting that the second term in Eq.(II.1) is usually small in size compared with

the first (except, perhaps, for negative h). Hence, we throw it away and

work on minimizing
m-1

Z [mk + h(Yk + wkuk)]z
1

with the constraints of Eq. (II.2) or with 82/a% added.
Let

Zy =0 +hly o)

then
PRADICELDIEELE IO

Verifying that

m-1 m

-1 k
ZY“Z:%ZI:%’ Z“’k“k

1

gives

Y
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Define the sequence U s k=1, ..., m=1 to satisfy the identity

m-1 m=1
Z"‘kzk = Z wicHy .
1 1

Then

IR sz - 2h sz“k '

The minimum variance unbiased problem reduces to Eq. (II.4):
Minimize E Zk2 subject to

Z 2

Z“kzk -

L + 2hM

[l
4

The minimum squared error problem becomes Eq. (II.5):

Minimize (Z Zi + 52)

where

(I11.4)

A bkt A b St s A e sk e raasie MM‘.-J




A"

2
B=(L+hM-ZZk+hZaka) ; (11.5)

In the first problem, the solution is clear i

Ly = Ag * My

where AO’ x] are determined by

L + 2hM

(m - T)ag + Ay Z"‘k
2
’\ozak N Z“k

I
=

(I1.6)

In the second problem, we get the minimizing equation

Y

Z, = B(1 - hak) ;

so the solution has the same form as the solution to the first problem. We
A"

can solve for B by using
a7
sz=Bm-1-hZak
iy 2
Zakzk=32ak-h2ak) ;
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SO
o . h
B-L+hM-ZZk Zakzk
N, ", 2
=L +hM-B m-]-hzak + h8 Zak-hzak
or
B = L + hM
m - 2h Eak+h22ak2
!
! i L + hM .

1 +Z (1 - hoy)?

In both cases the solution hinges on solving forak,and then being able to

use the Zk values to get the W values.

2
Write Sl = ; wy SO

) w, = Ask = sk - sk_]; sO =0 .

Then

= k
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and the identity :E:uka =:E: W H can be written as

hs s
Eak[“ g as + %]—Z T

Write, assuming o, = 0,

-1 m-1
N o .
P Z Sl = Qi) 3
1 1

define A+Bk = Sk - 3k+1 , SO getting the equation

h
25 [A+[ (1 + huydoy ]+ —3}2%

The identity will follow if
hak 1
8, LY+ hydoy T+ == k=1, Lo, el
or
Ka.[(1 + huk)ak] *hoy =1, k=1, ..., m1

Denote 9 = 1+ huk and Took at the homogeneous equation (Bm = 0)

KA"'(quk) + th = O, k = ], ey m’]

(11.7)
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The solution Bk to this equation has two uses: First, write

fif fif he |
Bly = Sz[A+ (a8 + T] * 85t E)
1 1

or

b eeniba s aa P ks e e

2
_ 1 :E::

Since w, + As,, Eq. (11.8) gives w, in terms of Z, . The other use of the

B, sequence is this: Let o = O By» then note that for any two sequences

Xk, Yk
BX Ve = X K Ve
:
= Kby * Vi
{ Thus {
| .
kA+(qkakBk) + hukBk
o = ko8, a8y + KA B B0y * MO8y
?
! = KB e ]

.j
’ To solve Eq. (I1.7), then, we need to solve i




k U1 Bk+] A+ I = 1

or

To solve for sk’ write

or

or forqk >1,

k-1
EII (QJ + —)
B =B —x
Ta.
2 %
Define Hk’ k=0, ..., m-1 by HO =]
k
h
m =1 (1 + =)

Since 8] is arbitrary, use the solution
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Then
< 1+hy_

so Eq. (II.8) becomes

3

32
o T T k-1 q

1 k

Going back to the O\ sequence, we have
1 1

A g, = =
ko KBy O K
leading to the solution

m-1 .
s Dy

and finally, to,

R - W
'k”an
k

thus completing the work.
The Wy given by the above are not easy to compute by hand; a

short computer program was written to calculate them. The question then

came up of whether the simple approximate solution given in Subsection 3.2.
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l was close enough to the complicated solution given above so that i* could

L be used with almost equal effectiveness.

' The first criterion we computed was average percentage of difference; J
i.e., if Wy is the above solution at h and‘mé is the approximate solution,

define
59

D

Y - ]
Avg. & Diff. = 100 x 29

K™%
E by !
iwk:

]

This is tabulated below.

Average Percentage of Difference

h = 0.7 0.6 0.5 0.4 0.3 0.2 2.1 e -7.1
3 Diff. 4.6 10.9 10.5 9.9 8.9 7.4 4.9 Lo =145

The approximation and the solution given above diverge for necagii/e
n. This may be due to the fact that the second term of Var(g), which we
discarded, becomes significant for negative n.

To gauge the effects of this difference we ran both solutions at

n=90.5and h = 0.25 as estimators of X(1). The comparison is given below.
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Comparison of Ratios

b= .5 .75 1.0 {1.25 |1.50 |1.75 | 2.0

Exact .5 .46 11,12 2.47 13.69 |4.73 |5.60 {6.35 |Weibull

Approx .5 .44 11.09 2.3313.46 [4.42 {5.21 [5.90 {Weibull

Exact .25 .64 .56 1.3912.23 {2.96 [3.56 {4.10 [ Weibull

Approx .25 61| .56 1.34 12,12 {2.80 {3.36 }3.85 | Weibull 3
Exact .5 540 .37 | .42| .88 |1.37 |1.81 |2.21 |Lognormal :
Approx .5 .52} .36 411 .84 11.3C¢ | 1.71 {2.07 jLlognormal 3
Exact .25 .59 ) .52 .35 .43 .70 .98 | 1.24 | Lognormal

Approx .25 .96 .50 .34 .43 .66 .94 {1.19 | Lognormal

These are close, and the biases are equally close. Thus, for long-

tailed distributions, which is the only solution in which the linear

model produces effective estimators, the approximate solution probably
can be substituted for the exact solution without a y deterioration in

performance.




4 Comparison of Ratios
# b= .5 .75 1.0 11.25 J1.50 |1.75% 2.0
Exact .5 .46 1 1.12 2.47 1 3.69 {4.73 [5.60 |6.35 |Weibull
Approx .5 .44 11.09 2.3313.46 14.42 [5.21 15.90 | Weibull
Exact .25 64| .56 1.3912.23 [2.96 |[3.56 {4.10 | Weibull
Approx .25 61| .56 1.34 12,12 2.80 |3.36 |3.85 |Weibull 1
Exact .5 .54 .37 .42} .88 |1.37 |1.81 |2.21 | Lognormal :
Approx .5 .52 .36 A1 .84 |1.30 {1.71 }2.07 | Lognormal
Exact .25 591 .52 .35 .43 .70 .98 11.24 | Lognormal
Approx .25 561 .50 .34 .43 .68 .94 11.19 1| Lognormal
E :
These are close, and the biases are equally close. Thus, for long-

tailed distributions, which is the only solution in which the Tinear
model produces effective estimators, the approximate solution probably

can be substituted for the exact solution without any deterioration in

performance.







